Integrating Ridge-type regularization in fuzzy nonlinear regression
نویسندگان
چکیده
In this paper, we deal with the ridge-type estimator for fuzzy nonlinear regression models using fuzzy numbers and Gaussian basis functions. Shrinkage regularization methods are used in linear and nonlinear regression models to yield consistent estimators. Here, we propose a weighted ridge penalty on a fuzzy nonlinear regression model, then select the number of basis functions and smoothing parameter. In order to select tuning parameters in the regularization method, we use the Hausdorff distance for fuzzy numbers which was first suggested by Dubois and Prade [8]. The cross-validation procedure for selecting the optimal value of the smoothing parameter and the number of basis functions are fuzzified to fit the presented model. The simulation results show that our fuzzy nonlinear modelling performs well in various situations. Mathematical subject classification: Primary: 62J86; Secondary: 62J07.
منابع مشابه
Two-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output
In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed. In this regard, ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients. . To evaluate the proposed regression model, we introduce the fu...
متن کاملElastic Net for Regression with Optimal Scaling Transformations
Regularized regression methods for linear regression have been developed the last few decades to overcome the flaws of ordinary least squares regression with regard to prediction accuracy. In this chapter, three of these methods (Ridge regression, the Lasso, and the Elastic Net) are incorporated into CATREG, an optimal scaling method for both linear and nonlinear transformation of variables in ...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملOn Tikhonov regularization, bias and variance in nonlinear system identification
Regularization is a general method for solving ill-posed and ill-conditioned problems. Traditionally, ill-conditioning in system identiication problems is usually approached using regularization methods such as ridge regression and principal component regression. In this work it is argued that the Tikhonov regularization method is a powerful alternative for regulariza-tion of non-linear system ...
متن کاملKernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators
Regularization is an essential element of virtually all kernel methods for nonparametric regressionproblems. A critical factor in the effectiveness of a given kernel method is the type of regularizationthat is employed. This article compares and contrasts members from a general class of regularizationtechniques, which notably includes ridge regression and principal component reg...
متن کامل